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The simplest bounded potential is that of penetrable spheres, which takes a positive finite value � if the two
spheres are overlapped, being zero otherwise. In this paper we derive the cavity function to second order in
density and the fourth virial coefficient as functions of T*�kBT /� �where kB is the Boltzmann constant and T
is the temperature� for penetrable sphere fluids. The expressions are exact, except for the function represented
by an elementary diagram inside the core, which is approximated by a polynomial form in excellent agreement
with accurate results obtained by Monte Carlo integration. Comparison with the hypernetted-chain �HNC� and
Percus-Yevick �PY� theories shows that the latter is better than the former for T*�1 only. However, even at
zero temperature �hard sphere limit�, the PY solution is not accurate inside the overlapping region, where no
practical cancellation of the neglected diagrams takes place. The exact fourth virial coefficient is positive for
T*�0.73, reaches a minimum negative value at T*�1.1, and then goes to zero from below as 1/T*4 for high
temperatures. These features are captured qualitatively, but not quantitatively, by the HNC and PY predictions.
In addition, in both theories the compressibility route is the best one for T*�0.7, while the virial route is
preferable if T*�0.7.
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I. INTRODUCTION

Ultrasoft and bounded potentials represent useful models
to characterize the effective two-body interaction in some
colloidal systems, such as star or chain polymers in good
solvents �1–8�. The simplest bounded potential is that of so-
called penetrable spheres �PS�, which is defined as

��r� = �� , r � � ,

0, r � � ,
� �1.1�

where ��0. This interaction potential was suggested by
Marquest and Witten �9� as a simple theoretical approach to
the explanation of the experimentally observed crystalliza-
tion of copolymer mesophases and it has since then been the
subject of a number of studies �7,10–21�. The classical inte-
gral equation theories, in particular the Percus-Yevick �PY�
and the hypernetted-chain �HNC� approximations, do not de-
scribe satisfactorily well the structure of the PS fluid, espe-
cially inside the overlapping region for low temperatures.
Thus the PS model can be used as a stringent benchmark to
test alternative theories �12–14,17,21�. From that point of
view, the derivation of exact properties provides an invalu-
able tool. The exact structural and thermodynamic properties
of the PS fluid in the high-temperature limit T*�kBT /�
→� �where kB is the Boltzmann constant and T is the tem-
perature� are known for any density 	�3, including the high-
density regime 	�3	T* �18�. On the other hand, the corre-
sponding properties in the complementary low-density limit

for any temperature has not been addressed, to the best of our
knowledge, except in the one-dimensional case �21�.

The aim of this paper is to derive the exact expressions
for the radial distribution function g�r� and, equivalently, the
cavity function y�r� of PS fluids to second order in density.
To that end we will exploit the fact that the PS Mayer func-
tion is proportional to the hard sphere �HS� Mayer function.
This implies that the diagrams to be evaluated are the same
as in the case of HS, except that now each diagram is af-
fected by a temperature-dependent factor.

In the next section we present some definitions and basic
equations. The density expansion of y�r� to second order is
worked out in Sec. III, where the HS functions derived by
Nijboer and van Hove �22� outside the core r�� are
complemented by their extensions in the overlapping region
�r���. However, we have not been able to derive the rigor-
ously exact expression for r�� of the function 
�r� repre-
sented by the only elementary diagram. Instead, the exact
values of 
�0�, 
��0�, 
���, 
����, 
����, 
����, and

0

�dr r2
�r� are obtained in Sec. IV. With these constraints,
we have constructed a polynomial approximation of 
�r� for
r�� which yields results indistinguishable from those ob-
tained by Monte Carlo �MC� integration with six significant
figures. The exact fourth virial coefficient is also derived in
Sec. IV. The exact results are compared with the HNC and
PY predictions in Sec. V. It is seen that the latter is generally
preferable at low temperatures, while the former is more ac-
curate at high temperatures. The paper ends with the conclu-
sion section.

II. DEFINITIONS AND BASIC EQUATIONS

We consider in this paper a fluid of particles interacting
via the pairwise potential �1.1�. Henceforth we take �=1 as
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the length unit. Let us introduce the cavity �or background�
function

y�r��,T*� = e��r�/kBTg�r��,T*� , �2.1�

where g�r �� ,T*� is the radial distribution function, �
��� /6�	 being the packing fraction. Equation �2.1� implies
that

g�r��,T*� = y�r��,T*� − xy�r��,T*�
�1 − r� , �2.2�

where 
�r� is the Heaviside step function and we have called

x � 1 − e−1/T*
. �2.3�

The parameter x represents the probability of rejecting an
overlap of two particles in a MC move. The thermodynamic
quantities can be expressed in terms of g�r �� ,T*� or
y�r �� ,T*� �23–25�. Particularized to the PS model, the com-
pressibility factor Z� p /	kBT is given by the virial equation
of state as

Z��,T*� = 1 + 4�xy�1��,T*� . �2.4�

The �dimensionless� isothermal compressibility K
�kBT��	 /�p�T is

K��,T*� = 1 + 24���
0

�

dr r2�y�r��,T*� − 1�

− x�
0

1

dr r2y�r��,T*�� . �2.5�

Finally, the internal energy per particle can be written as

u��,T*� = �
3

2
T* + 12��1 − x��

0

1

dr r2y�r��,T*�� .

�2.6�

These three quantities are thermodynamically connected by
the relations

K−1 =
���Z�

��
, �2.7�

�
��u/��

��
= �1 − x�

�Z

�x
. �2.8�

The series expansions of the cavity function and the com-
pressibility factor in powers of density read

y�r��,T*� = 1 + �
n=1

�

yn�r�T*�� 6

�
�n

�n, �2.9�

Z��,T*� = 1 + �
n=1

�

bn+1�T*��n. �2.10�

In Eq. �2.10�, bn�T*� is the �reduced� nth virial coefficient.
The quantities �bn�T*�� can be obtained from the functions
�yn�r �T*�� through the virial route, Eq. �2.4�, the compress-
ibility route, Eq. �2.5�, or the energy route, Eq. �2.6�. In order
to distinguish the results derived through each route, we will

use the notation bn
v�T*�, bn

c�T*�, bn
e�T*�, respectively. Of

course, bn
v�T*�=bn

c�T*�=bn
e�T*� if the exact cavity function is

employed.
Insertion of the expansion �2.9� into Eqs. �2.4� and �2.6�

yields �for n�2�

bn
v�T*� = 4x� 6

�
�n−2

yn−2�1�T*� , �2.11�

bn
e�T*� = 12�n − 1�� 6

�
�n−2�

0

x

dx1�
0

1

dr r2yn−2�r�T1
*� .

�2.12�

In Eq. �2.12� use has been made of Eq. �2.8� and of the ideal
gas condition limT*→�bn�T*�=0. In the case of the compress-
ibility route, insertion of Eq. �2.9� into Eq. �2.5� and use of
the relation �2.7� leads to the recursive formula

bn
c�T*� = − �

m=1

n−1
m

n
bm

c �T*�Kn−m�T*� , �2.13�

where K1�T*�=−8x and

Kn�T*� � 24� 6

�
�n−1
�

0

�

dr r2yn−1�r�T*�

− x�
0

1

dr r2yn−1�r�T*�� �2.14�

for n�2.

III. CAVITY FUNCTION TO SECOND ORDER
IN DENSITY

The virial coefficients yn�r �T*� are represented by dia-
grams �23,25�. In particular,

�3.1�

�3.2�

Here the open circles represent root points separated by a
distance r, the filled circles represent field points to be inte-
grated out, and each bond represents a Mayer function

f�r�T*� = e−��r�/kBT − 1. �3.3�

Thus, for instance,

�3.4�
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�3.5�

where rij = �ri−r j� and r12=r.
Equations �3.1�–�3.5� hold for any interaction potential. In

the special case of PS, the Mayer function becomes

f�r�T*� = xfHS�r� , �3.6�

where

fHS�r� = − 
�1 − r� �3.7�

is the Mayer function of HS. Therefore, the spatial depen-
dence of each one of the diagrams contributing to the virial
expansion �2.9� is exactly the same as for HS. The only
difference is that each diagram is now multiplied by the
temperature-dependent parameter x raised to a power equal
to the number of bonds in that particular diagram. As a con-
sequence, Eqs. �3.1� and �3.2� become

y1�r�T*� = x2��r� , �3.8�

y2�r�T*� = x3��r� + 2x4��r� +
x4

2
�2�r� +

x5

2

�r� . �3.9�

Here ��r� is represented by the diagram on the right-hand
side of Eq. �3.1�, except that now each bond corresponds to a
Mayer function fHS. Analogously, the functions ��r�, ��r�,
and 
�r� are represented by the first, second, and fourth dia-
gram, respectively, on the right-hand side of Eq. �3.2�, with
fHS for each bond. The expressions of these functions for r
�1 are known �22,26�. The region r�1 is the physically
relevant one in the case of HS. However, the overlapping
region r�1 is essential in the case of PS, since g�r �� ,T*�
�0 for r�1, except in the zero-temperature limit �where the
PS model reduces to the HS one�. Therefore, it is necessary
to extend the knowledge of ��r�, ��r�, ��r�, and 
�r� to the
domain 0�r�1.

Given a radial function F�r� we define its Fourier trans-
form as

F̃�k� =� dr eik·rF�r� =
4�

k
�

0

�

dr r sin�kr�F�r� .

�3.10�

It is easy to realize that �̃�k�= � f̃HS�k��2, where

f̃HS�k� = 4�
k cos k − sin k

k3 . �3.11�

Inverse Fourier transform simply yields

��r� =
�

12
�2 − r�2�r + 4�
�2 − r� . �3.12�

This implies that the function ��r� for 0�r�1 is just the
analytical continuation of its expression for 1�r�2. Next,

note that �̃�k�= � f̃HS�k��3, so that

��r� = �A�r�
�1 − r� + �B�r�
�3 − r� �3.13�

with

�A�r� =
�2

36

3

35r
�r − 1�4�r3 + 4r2 − 53r − 162� , �3.14�

�B�r� = −
�2

36

1

35r
�r − 3�4�r3 + 12r2 + 27r − 6� . �3.15�

Therefore, ��r�=�A�r�+�B�r� for 0�r�1, while ��r�
=�B�r� for 1�r�3. In the case of ��r�, one has �̃�k�
= f̃HS�k��̃*�k�, where �*�r�=��r�fHS�r�. As a consequence,

��r� = �A�r�
�1 − r� + �B�r�
�2 − r� , �3.16�

with

�A�r� = −
2

3
�A�r� , �3.17�

�B�r� =
�2

36

1

35r
�r − 2�2�r5 + 4r4 − 51r3 − 10r2 + 479r − 81� .

�3.18�

Equations �3.15� and �3.18� coincide with those derived in
Ref. �22� by a different method. On the other hand, the func-
tions �A�r� and �A�r�, which are needed to get ��r�1� and
��r�1�, respectively, were not considered in Refs. �22,26�.
Near the origin,

��r� =
�

6
�8 − 6r� + O�r2� , �3.19�

��r� = −
�2

36
30 + O�r2� , �3.20�

��r� =
�2

36
�30 − 15r� + O�r2� . �3.21�

Equations �3.13�–�3.18� show that ��r� has a fourth-order
discontinuity at r=1 and at r=3, while ��r� has a fourth-
order discontinuity at r=1 and a second-order discontinuity
at r=2.

Now we turn to the much more involved function 
�r�,
represented by the elementary diagram at the end of the
right-hand side of Eq. �3.2�. Let us decompose it in a form
similar to Eqs. �3.13� and �3.16�,


�r� = 
A�r�
�1 − r� + 
B�r�
��3 − r� − �2�r� .

�3.22�

The exact expression for 
B�r� was obtained by Nijboer and
van Hove �22�. It reads
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B�r� = �
− r2� 3r2

280
−

41

420
��3 − r2

− �23

15
r −

36

35r
�cos−1 r

�3�4 − r2�

+ � 3r6

560
−

r4

15
+

r2

2
+

2r

15
−

9

35r
�cos−1 r2 + r − 3

�3�4 − r2�

+ � 3r6

560
−

r4

15
+

r2

2
−

2r

15
+

9

35r
�cos−1 − r2 + r + 3

�3�4 − r2�
� .

�3.23�

We have not been able to obtain an analytic expression for

�r� in the interval 0�r�1. By working with bipolar coor-
dinates, it is possible to express the derivative 
��r�1� as a
sum of 13 triple integrals, but only two of them seem to be
analytically solvable. Therefore, we have resorted to numeri-
cal evaluation of 
�r�1� by the MC method �26� and to a
very accurate polynomial approximation. In order to con-
struct the latter, some constraints on the exact 
�r�1� are
derived in the next section.

IV. CONSTRAINTS ON �„r…. POLYNOMIAL
APPROXIMATION

In this section we derive some constraints on 
�r� for r
�1. First, we take into account that 
�r� and its first three
derivatives must be continuous at r=1. We are not aware of
a formal proof of this statement, but it is strongly supported
by the following two arguments: �i� Both ��r� and ��r� have
a fourth-order discontinuity at r=1, even though a diagonal
bond is added when going from the diagram representing
��r� to that representing ��r�; �ii� in the one-dimensional
case, the three functions ��r�, ��r�, and 
�r� have the same
type of singularity at r=1, namely a second-order disconti-
nuity �21�.

From Eqs. �3.22� and �3.23� one can get


�1� =
�2

36
�b4

HS

2
−

57

4
� , �4.1�


��1� =
�2

36

1

51
�347b4

HS

3
−

7219

6
−

256�2

�
� , �4.2�


��1� =
�2

36

1

153
�−

619b4
HS

3
−

8149

6
+

2432�2

�
� , �4.3�


��1� =
�2

36

2

153
�946b4

HS

3
−

16597

3
−

4832�2

�
� . �4.4�

In the above equations,

b4
HS =

2707

70
+

438�2 − 4131 sec−1 3

70�
� 18.3648 �4.5�

is the exact value of the fourth virial coefficient for HS.
Next, note that


�0� =� dr ��r�fHS�r�

= −
�2

3
�

0

1

dr r2�r − 2�2�r + 4� = −
�2

36
30. �4.6�

The same result is obtained from the following zero-
separation theorem for HS �27�:

ln yHS�0��� = 4�yHS�1��� + 4�
0

�

d�1yHS�1��1� , �4.7�

where yHS�r ���=limT*→0 y�r �� ,T*� is the cavity function for
HS. As a further constraint on the unknown function 
�r� for
r�1, let us consider the alternative zero-separation theorem

yHS� �0���
yHS�0���

= − 6�yHS�1��� . �4.8�

This implies that limT*→0 y2��0 �T*�=−��2 /36�63. From Eqs.
�3.9� and �3.19�–�3.21� one then has


��0� =
�2

36
30. �4.9�

As a consequence of Eqs. �3.19�–�3.21�, �4.6�, and �4.9�, the
form of y2 near the origin is

y2�r�T*� =
�2

36
x3�− 30 + 2x�46 − 39r� − 15x2�1 − r�� + O�r2� .

�4.10�

Let us now apply the condition of thermodynamic consis-
tency for the fourth virial coefficient b4�T*�. Taking into ac-
count that y0�r �T*�=1, y1�1 �T*�=x2��1�= �5� /12�x2, and

y2�1�T*� = x3��1� + 2x4��1� +
x4

2
�2�1� +

x5

2

�1�

=
�2

36
x3
−

544

35
+

6347

280
x + �b4

HS

4
−

57

8
�x2� ,

�4.11�

Eq. �2.11� yields

b2�T*� = 4x, b3�T*� = 10x3, �4.12�

b4�T*� = x4
b4
HSx2 − �1 − x�

4352 − 1995x

70
� . �4.13�

The same results for b2 and b3 are obtained through the en-
ergy route, Eq. �2.12�. As for b4, Eq. �2.12� yields

b4�T*� =
36

�29x4�
0

1

dr

�r2
��r� +
8

5
x��r� +

2

5
x�2�r� +

1

3
x2
�r�� .

�4.14�

Since the functions ��r�, ��r�, and �2�r� are known for r
�1, the integrals involving them can be performed. Thus,
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equating the right-hand sides of Eqs. �4.13� and �4.14� one
gets

�
0

1

dr r2
�r� =
�2

36
�b4

HS

3
−

57

6
� =

2

3

�1� . �4.15�

In turn, this condition implies that

K3 = − 2x3
256 −
12752

35
x +

6347

35
x2 + �2b4

HS − 57�x3� ,

�4.16�

where the coefficients Kn are defined by Eq. �2.14�. Use of
K1=−8x, K2=2x2�32−15x�, and Eq. �4.16� in Eq. �2.13�
leads again to Eqs. �4.12� and �4.13� �28�.

Although the exact analytic expression of 
A�r�, and
hence of 
�r� for r�1 is not known, we have derived in this
section a number of constraints. The value of 
�r� and its
first three derivatives at r=1 are given by Eqs. �4.1�–�4.4�.
On the other hand, Eqs. �4.6� and �4.9� give 
�r� and 
��r� at
the origin. Finally, the integral of r2
�r� in the interval 0
�r�1 is determined by Eq. �4.15�. Since there are seven
constraints we can approximate 
�r� for r�1 by a polyno-
mial of the sixth degree:


poly�r� =
�2

36
��0 + �1�r − 1� + �2�r − 1�2 + �3�r − 1�3

+ �r − 1�4��0 + �1r + �2r2�� . �4.17�

In this equation, the constants �0= �36/�2�
�1�,
�1= �36/�2�
��1�, �2= �36/�2�
��1� /2, and �3

= �36/�2�
��1� /6 are obtained from Eqs. �4.1�–�4.4�. From
Eqs. �4.6� and �4.9� one gets

�0 =
1

459
�4309b4

HS

3
−

129317

6
−

10784�2

�
� , �4.18�

�1 =
1

27
�554b4

HS

3
−

8663

3
−

1120�2

�
� . �4.19�

Finally, application of Eq. �4.15� yields

�2 =
1

3
�3803b4

HS

6
−

134713

12
−

920�2

�
� . �4.20�

The second derivative at the origin is


poly� �0� =
�2

36

10

459
�55069b4

HS

3
−

981592

3
−

22232�2

�
�

� −
�2

36
2.07929. �4.21�

In contrast, the exact result is �see the Appendix�


��0� = −
�2

36
�12 −

18�3

�
� � −

�2

36
2.07608. �4.22�

Therefore, 
poly� �0� /
��0��1.00155. This gives an idea of
the extreme accuracy of 
poly�r�. In fact, we have evaluated
numerically 
�r� by MC integration with six significant fig-

ures and have found that 
poly�r� agrees with 
�r� within the
error bars �see Table I�. One could exploit the exact knowl-
edge of 
��0�, Eq. �4.22�, to propose an approximation pre-
sumably even more accurate than Eq. �4.17�, but this does
not seem to be necessary in view of Table I.

V. COMPARISON WITH THE HNC AND PY THEORIES

Once we have obtained the exact temperature dependence
of the function y2�r� and the associated fourth virial coeffi-
cient b4 for PS, it is worthwhile comparing these two quan-
tities with the predictions provided by the two classical inte-
gral equation theories, namely the HNC and PY theories.

A. Cavity function to second order, y2„r…

In the HNC theory, the elementary diagrams are neglected
at any order in density �25�. To second order in density, the
only elementary diagram is the last one given in Eq. �3.2�.
Therefore, the function y2�r� is approximated by

y2
HNC�r�T*� = x3��r� + 2x4��r� +

x4

2
�2�r� . �5.1�

In the PY approximation, apart from the elementary dia-
grams, a subset of the remaining diagrams is also neglected.
In particular, the PY expression for y2�r� only retains the two
first diagrams in Eq. �3.2�, so that

TABLE I. Values of −�36/�2�
�r� in the interval 0�r�1 as
obtained numerically by MC integration and as given by the poly-
nomial approximation �4.17�. The number enclosed between paren-
theses in the second column indicates the 95% confidence error.

r MC Eq. �4.17�

0.00 29.9994�6� 30

0.05 28.5029�5� 28.5031

0.10 27.0146�5� 27.0144

0.15 25.5367�4� 25.5369

0.20 24.0735�4� 24.0736

0.25 22.6277�4� 22.6275

0.30 21.2015�3� 21.2017

0.35 19.7987�3� 19.7991

0.40 18.4228�3� 18.4228

0.45 17.0756�3� 17.0758

0.50 15.7614�2� 15.7612

0.55 14.4822�2� 14.4820

0.60 13.2414�2� 13.2413

0.65 12.0420�2� 12.0421

0.70 10.88745�13� 10.88740

0.75 9.78032�12� 9.78037

0.80 8.72413�14� 8.72404

0.85 7.72152�10� 7.72151

0.90 6.77582�8� 6.77586

0.95 5.89018�7� 5.89019

1.00 5.06759�5� 5.06762
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y2
PY�r�T*� = x3��r� + 2x4��r� . �5.2�

Figure 1 compares the exact function y2�r� with the HNC
and PY approximations at T*=0 �hard spheres�, T*=1, and
T*=2. Both theories agree very well with the exact y2�r� for
r�1.5 but discrepancies are apparent for shorter distances,
especially inside the core �r�1�. Although restricted to low

densities, Fig. 1 clearly illustrates some of the general fea-
tures found at finite densities �13,14�: The HNC overesti-
mates the penetrability effect, while the PY approximation
underestimates it. The former property is a consequence of
the neglect of �x5 /2�
�r�, which is a negative definite quan-
tity. This is only partially compensated by the PY neglect of
�x4 /2��2�r�, since �2�r�� �
�r�� for r�1 and, moreover, x4

�x5. While the PY theory tends to be better at lower tem-
peratures �i.e., when the overlapping of particles is hindered
and the system is close to that of HS�, the HNC is preferable
at higher temperatures. If we characterize the quality of each
approximation by the separation of the corresponding contact
value y2�1� from the exact result, it turns out that the tem-
perature beyond which the HNC approximation becomes
better than the PY approximation is T*�1.04. This is similar
to the behavior found in the one-dimensional case �21�.

B. Fourth virial coefficient

The knowledge of y2
HNC�r �T*� and y2

PY�r �T*� allows one to
get the associated expressions for the fourth virial coefficient
b4�T*�. As discussed in Sec. II, there are three alternative
routes �cf. Eqs. �2.11�–�2.13�� and there is no reason to ex-
pect internal consistency among them, unless the exact y2�r�
is used. The expressions for b4

v�T*�, b4
e�T*�, and b4

c�T*� in
the HNC and PY approximations are given in Table II,
where, for completeness, the exact expression, Eq. �4.13�, is
also included. It is known �29� that the HNC integral equa-
tion provides thermodynamically consistent results through
the virial and energy routes, regardless of the potential con-
sidered. This explains the fact that b4

HNC,v�T*�=b4
HNC,e�T*�.

On the other hand, the PY integral equation yields three
different predictions, i.e., b4

PY,v�T*��b4
PY,e�T*��b4

PY,c�T*�. It
is interesting to note that b4

HNC,v/e�T*�= �3/2�b4
PY,c�T*�

= �1/4�xdb4
PY,e�T*� /dx.

In the limit T*→0 one recovers the known results for HS,
namely b4

HNC,v/e�0�=57/2=28.5, b4
HNC,c�0�=5623/420

�13.3881, b4
PY,v�0�=16, and b4

PY,c�0�=19. Although the en-
ergy route is ill defined for strict HS, taking the zero-
temperature limit on the PS model yields well defined values
�30�. In that way, one finds b4

PY,v�0�=1814/175�10.3657,
which is a rather poor value reflecting the inaccuracy at any
temperature of y2

PY�r� for r�1. In the opposite high-
temperature limit, one has limT*→�b4�T*� /x4=−2176/35.

FIG. 1. �Color online� Plot of the function y2�r� at T*=0 �top
panel�, T*=1 �middle panel�, and T*=2 �bottom panel�. The solid
lines are the exact results, the dashed lines are the HNC predictions,
and the dotted lines are the PY predictions.

TABLE II. Fourth virial coefficient b4�T*� and other related quantities as given exactly and by the HNC
and PY approximations through the virial �v�, energy �e�, and compressibility �c� routes.

Theory b4�T*� b4�0� T0
* Tmin

* �b4�min

Exact x4�b4
HSx2− �1−x��4352−1995x� /70� b4

HS 0.7250 1.1027 −1.4803

HNC, v /e x4�6347x−4352� /70 57

2
0.8641 1.2574 −1.1258

HNC, c x4�31735x−26112� /420 5623

420
0.5778 0.9314 −2.3345

PY, v 16x4�171x−136� /35 16 0.6304 0.9888 −2.0378

PY, e 2x4�6347x−5440� /175 1814

175
0.5140 0.8641 −2.7485

PY, c x4�6347x−4352� /105 19 0.8641 1.2574 −0.7505
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This exact value is retained by all the approximations, except
by the compressibility route in the PY theory, which yields
limT*→�b4

PY,c�T*� /x4=−4352/105, i.e., 2 /3 of the exact re-
sult.

While b2�T*� and b3�T*� are positive definite quantities,
this is not the case of b4�T*�. The latter quantity changes sign
at a certain “Boyle-like” temperature T0

*. In addition, b4�T*�
presents a �negative� minimum value �b4�min at a temperature
Tmin

* �T0
*. The numerical values of T0

*, Tmin
* , and �b4�min are

displayed in Table II. From Eq. �2.12� one can see that the
temperature Tmin

* associated with b4
e�T*� is the temperature

across which the integral 
0
1dr r2y2�r �T*�, and hence the

third-order term in the density expansion of the internal en-
ergy, changes from positive to negative.

The temperature dependence of the fourth virial coeffi-
cient is shown in Fig. 2, where, apart from the exact curves,
the two HNC approximations and the three PY approxima-
tions are included. The best approximation up to T*�0.71 is
provided by b4

PY,c. In the intermediate range 0.71�T*

�1.04; however, b4
PY,v presents the best agreement. Finally,

for T*�1.04 the best performance corresponds to b4
HNC,v/e.

Within the PY theory, the energy route is never better than
the virial route but becomes preferable to the compressibility
route for T*�1.22. In the case of the HNC theory, the com-
pressibility route is better than the virial-energy routes for
T*�0.73 only.

VI. CONCLUSION

In this paper we have considered a three-dimensional fluid
of particles interacting via the PS interaction �1.1�. This po-

tential encompasses the ideal gas in the high-temperature
limit �T*→� or x→0� and the HS fluid in the low-
temperature limit �T*→0 or x→1�. However, at finite tem-
perature the problem becomes much more difficult. Even the
one-dimensional case is not exactly solvable �21� since there
is no a priori limitation to the number of particles that can
interact simultaneously with a given particle.

The diagrams which appear in the density expansions for
the PS fluids are exactly the same as those appearing for HS
fluids, except that each diagram needs to be multiplied by the
temperature-dependent parameter x raised to the number of
bonds. By exploiting this fact, we have obtained the cavity
function through second order in density and the equation of
state through the fourth virial coefficient. In order to obtain
y2�r �T*�, we have needed to extend to r�1 the functions
evaluated by Nijboer and van Hove �22� for r�1. Neverthe-
less, the possible analytical evaluation of the elementary-
diagram function 
�r� for r�1 seems to be a formidable
task. Thus we have resorted in that case to two complemen-
tary approaches: �i� A numerical computation by MC integra-
tion with an error bar of the order of 0.001% and �ii� a
sixth-degree polynomial approximation constructed by en-
forcing seven exact constraints. Both methods show such an
excellent mutual agreement that the results obtained from the
polynomial approximation can be considered as exact from a
practical point of view.

The results obtained here for y2�r �T*� and b4�T*� have
been compared with those corresponding to the two classical
integral equation theories, namely the HNC and PY theories.
It is known that the PY theory is much better than the HNC
one for HS fluids, so that one could have expected a similar
situation for PS fluids, at least at low temperatures. Our re-
sults show that this is indeed the case, provided that T*�1.
However, even at very low temperatures �including the HS
limit T*→0�, the PY solution strongly underestimates the
cavity function in the overlapping region. This reflects the
fact that the fortunate practical cancellation �in the case of
HS� of the diagrams neglected by the PY equation does not
apply for r�1. In this respect, it is interesting to note that
the widely extended belief that the PY theory becomes exact
in the special case of one-dimensional hard rods is only cor-
rect for r�1 �21�.

When comparing the exact fourth virial coefficient with
the HNC and PY theories one has to take into account their
thermodynamic inconsistency, yielding two HNC predictions
�virial-energy and compressibility routes� and three PY pre-
dictions �virial, energy, and compressibility routes�. All these
predictions capture the nonmonotonic behavior of b4�T*�. In
both theories, the compressibility route is the best one for
T*�0.7, while the virial route is preferable if T*�0.7. As in
the case of the structural functions, the equation of state is
better described by the HNC equation than by the PY equa-
tion for high enough temperatures �T*�1�.

It is obvious that access to nontrivial exact information on
the structural and thermodynamic properties of fluids, even if
restricted to special cases, is of paramount importance. From
that point of view, we hope that the results reported in this
paper can contribute to an advancement on our knowledge of
the behavior of systems of particles interacting through
bounded potentials.

FIG. 2. �Color online� Plot of the fourth virial coefficient b4�T*�
�top panel� and of the scaled fourth virial coefficient b4�T*� /x4 �bot-
tom panel�, where x=1−e−1/T*

, as given exactly and by the HNC
and PY approximations.
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APPENDIX: EVALUATION OF ��„0…

The function 
�r� is represented by the elementary dia-
gram displayed at the end of the right-hand side of Eq. �3.2�.
Thus


�r2� =� dr3� dr4f�r3�f�r4�f�r23�f�r24�f�r34� , �A1�

where here f�r�= fHS�r�=−
�1−r�. Now we differentiate
with respect to r2 and take into account the mathematical
property

�f�r23�
�r2

= ��r23 − 1�
�r23

�r2
= ��r23 − 1�

r2 · r23

r2
. �A2�

The result is


��r2� = 2� dr3� dr4f�r3�f�r4�f�r24�f�r34�

� ��r23 − 1�cos �23, �A3�

where �23 is the polar angle of the vector r23 and the z axis is
assumed to point in the direction of r2. Making the change of
variables r3→r23, r4→r24, Eq. �A3� becomes


��r2� = 2� dr3� dr4f�r23�f�r24�f�r4�f�r34�

� ��r3 − 1�cos �3. �A4�

Note that r23
2 =r2

2+1−2r2 cos �3, so that a necessary �but not
sufficient� condition for f�r23��0 is �3�� /2. Therefore, in
the limit r2→0, one has


��0� = 4���1��
0

�/2

d�3 sin �3 cos �3 =
�2

36
30, �A5�

in agreement with Eq. �4.9�.
Now we differentiate again with respect to r2 to get


��r2� = 
1��r2� + 
2��r2� , �A6�

where


1��r2� = 2� dr3� dr4f�r24�f�r4�f�r34�

� ��r3 − 1�cos �3��r23 − 1�cos �23, �A7�


2��r2� = 2� dr3� dr4f�r23�f�r4�f�r34�

� ��r3 − 1�cos �3��r24 − 1�cos �24. �A8�

Let us first consider 
1��r�. Note that cos �23=r2−cos �3,
where it has been taken into account that r3=1. Now, using
the property

��h�x�� = �h��x0��−1��x − x0� , �A9�

where h�x� is a function that vanishes at x=x0, we have

��r23 − 1� = r2
−1��cos �3 − r2/2� . �A10�

Thus


1��r2� = 2r2�
0

2�

d�3� dr4f�r24�f�r4�f�r34� , �A11�

where r34
2 =r4

2+1−r4�r2 cos �4+�4−r2
2sin �4 cos��3−�4��,

�3 and �4 being azimuthal angles. At the origin one simply
has


1��0� = 0. �A12�

In Eq. �A8�, since r4
2=r2

2+1−2r2 cos �24, a necessary con-
dition for f�r4��0 is �24�� /2. Now, setting r2=0 and tak-
ing into account that cos �24→−cos �4, Eq. �A8� becomes


2��0� = − 2�
0

2�

d�3�
0

2�

d�4�
0

1

d�cos �3�cos �3

� �
−1

0

d�cos �4�cos �4f�r34� , �A13�

where now r34
2 =2�1−cos �3 cos �4−sin �3 sin �4 cos��3

−�4��. The changes z=cos �3, z�=−cos �4, and �=�3−�4

lead to


2��0� = − 8��
0

1

dz�
0

1

dz�zz��
0

�

d�

� 
�cos � −
1 + 2zz�

2��1 − z2��1 − z�2�
� . �A14�

It can be easily seen that 1+2zz��2��1−z2��1−z�2� if and
only if z2+z�2+zz��3/4. This requires that 0�z��3/2 and
0�z�� ��3�1−z2�−z� /2. Consequently,


2��0� = − 8��
0

�3/2

dz�
0

��3�1−z2�−z�/2
dz�zz�

� cos−1 1 + 2zz�

2��1 − z2��1 − z�2�
. �A15�

The result of the integral is


2��0� = −
�2

36
�12 −

18�3

�
� . �A16�
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